SWT-2017-9 JUNE 2017
E
LECTRIC
V
EHICLES IN THE
U.S.:
PROGRESS TOWARD BROADER ACCEPTANCE
B
RANDON
S
CHOETTLE
MICHAEL SIVAK
ELECTRIC VEHICLES IN THE U.S.:
PROGRESS TOWARD BROADER ACCEPTANCE
Brandon Schoettle
Michael Sivak
The University of Michigan
Transportation Research Institute
Ann Arbor, Michigan 48109-2150
U.S.A.
Report No. SWT-2017-9
June 2017
i
Technical Report Documentation Page
1. Report No.
SWT-2017-9
2. Government Accession No.
3. Recipient’s Catalog No.
4. Title and Subtitle
Electric Vehicles in the U.S.: Progress Toward Broader Acceptance
5. Report Date
June 2017
6. Performing Organization Code
383818
7. Author(s)
Brandon Schoettle and Michael Sivak
8. Performing Organization Report
No.
SWT-2017-9
9. Performing Organization Name and Address
The University of Michigan
Transportation Research Institute
2901 Baxter Road
Ann Arbor, Michigan 48109-2150 U.S.A.
10. Work Unit no. (TRAIS)
11. Contract or Grant No.
12. Sponsoring Agency Name and Address
The University of Michigan
Sustainable Worldwide Transportation
13. Type of Report and Period
Covered
14. Sponsoring Agency Code
Information about Sustainable Worldwide Transportation is available at
http://www.umich.edu/~umtriswt.
This report examines
public acceptance-related issues that have historically
acceptance and adoption of plug-in electric vehicles (PEVs), which includes both battery
electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV)
comparison, information for current gasoline-
presented where appropriate.
The main issues explored in this report include:
vehicle availability, including sales trends and costs
fuel economy, GHG emissions, and petroleum usage
batteries, charging time, driving range, and range anxiety
charging infrastructure availability and smart charging
public opinion and government support
becoming increasingly more competitive with conventional gasoline-
combustion engine (ICE) vehicles. Furthermore, future costs of the vehicles an
with rising public interest
17. Key Words
plug-in electric vehicle, PEV, battery electric vehicle, BEV, plug-in
hybrid electric vehicle, PHEV, greenhouse gases, internal combustion
engine, batteries, energy density
18. Distribution Statement
Unlimited
19. Security Classification (of this report)
None
20. Security Classification (of this page)
None
21. No. of Pages
43
22. Price
ii
Abbreviations used in this report
Abbreviation
Definition
AC
alternating current
ANL
Argonne National Laboratory
BEV
battery electric vehicle
Btu
British thermal units
CAFE
corporate average fuel economy
CD
charge depleting
CO
2
carbon dioxide
CS
charge sustaining
DC
direct current
EV
electric vehicle (any type)
EVSE
electric vehicle supply equipment
g
gram
gal
U.S. gallon
GGE
gasoline gallon equivalent
GHG
greenhouse gas
hr
hour
ICE
internal combustion engine
kg
kilogram
km
kilometer
kWh
kilowatt-hour
L
liter
lb
pound
mi
mile
min
minute
mpg
miles per U.S. gallon
mpge
miles per U.S. gallon equivalent
PEV
plug-in electric vehicle
PHEV
plug-in hybrid electric vehicle
quad
quadrillion Btu
V2G
vehicle-to-grid
V
volt
VMT
vehicle miles of travel
Wh
watt-hour
ZEV
zero-emission vehicle
iii
Contents
Introduction ..........................................................................................................................1
Vehicles ................................................................................................................................4
Vehicle availability and sales trends ...............................................................................4
Vehicle prices ..................................................................................................................7
Vehicle fuel economy .....................................................................................................8
Well-to-wheels GHG emissions and petroleum usage ...................................................9
Driving range, charging time, and range anxiety ..........................................................11
Energy density and battery cost ....................................................................................14
Summary of key vehicle-specific aspects of BEVs and PHEVs ...................................15
Charging infrastructure ......................................................................................................17
Current and future availability ......................................................................................17
Fuel pricing trends and effective cost per mile .............................................................21
Fuel production and renewable power sources .............................................................24
Smart or intelligent charging .........................................................................................25
V2G (vehicle-to-grid) technology .................................................................................26
Summary of key aspects of fuel sources and related refueling infrastructure ..............27
Public opinion regarding PEVs ..........................................................................................28
Government support ...........................................................................................................29
Key Findings ......................................................................................................................31
Summary ............................................................................................................................34
References ..........................................................................................................................35
1
Introduction
Currently, electricity accounts for just 0.1% of all transportation-related energy
consumption in the U.S., while 92% of transportation-related energy consumption is still derived
from petroleum (0.03 and 25.7, respectively, out of a total 27.9 quads
1
consumed for
transportation) (LLNL/DOE, 2017). However, in recent years, sales of plug-in electric vehicles
(PEVs)—both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs)—
have begun to accelerate, with sales of each vehicle type increasing by more than 700% since
2011 (AFDC, 2017g). This rapid increase in sales for these relatively new (and still evolving)
vehicle technologies was due in part to the need for automobile manufacturers to begin to meet
the increasingly stringent requirements to lower CO
2
and other greenhouse gas (GHG) emissions
(and the corresponding performance gains in fuel economy) to help comply with current and
future CAFE standards.
2
Zero-emission vehicles (ZEVs) such as BEVs have played an
important role in recent years to help manufacturers achieve their CAFE targets; California and
several other states have recently required the sale of such vehicles (Carley, Duncan, Esposito,
Graham, Siddiki, and Zirogiannis, 2016).
Battery electric vehicles (BEVs) operate entirely on electricity stored in on-board battery
systems that are charged from the main electrical grid, usually via a special high-voltage
charging station and using special electrical connectors. Plug-in hybrid electric vehicles
(PHEVs) can also operate on electricity stored in on-board battery systems that are charged from
the main electrical grid or by an internal combustion engine (ICE), but with the option of
switching to the internal combustion engine for power when the battery runs low. Example
illustrations of the key differentiating components for each vehicle type are shown in Figure 1
(AFDC, 2017e, 2017f). The advantage offered by PEVs over conventional ICE vehicles is their
ability to operate on little to no petroleum (depending on the vehicle design and operating mode).
Correspondingly, little to no CO
2
emissions are associated with such vehicles when calculating
CAFE compliance.
1
One quad (one quadrillion Btu) is equal to approximately 8 billion U.S. gallons of gasoline or 293 billion kWh of
electricity.
2
In March of 2017, the EPA and NHTSA officially announced that the midterm review of CAFE targets for model
years 2022-2025 would be re-reviewed (EPA/NHTSA, 2017), reversing the decision to confirm the targets set by the
previous administration (EPA, 2017c). Therefore, it is possible that the CAFE targets for 2022-2025 could be
altered or eliminated during the upcoming midterm re-review.
2
Figure 1. Illustrations of the key differentiating components for all-electric vehicles (called
battery electric vehicles, or BEVs, in this report) and plug-in hybrid electric vehicles (PHEVs)
(AFDC, 2017e, 2017f).
3
The main advantages and disadvantages of each PEV type are listed below in Table 1
(EEA, 2016).
Table 1
Main advantages and disadvantages of each PEV type over
conventional ICE vehicles (EEA, 2016).
Vehicle type Advantages Disadvantages
BEV
Higher fuel efficiency
Lower fuel cost
Home/workplace recharging
Low engine noise
Zero tailpipe emissions (ZEV)
Higher vehicle price
Fewer recharging stations
Long recharge times
Short driving range
Eventual battery disposal
PHEV
Higher fuel efficiency
Lower fuel cost (for electricity)
Home/workplace recharging
Many refueling stations (for gas)
Higher vehicle price
Technologically complex
Semi-long recharge times
Eventual battery disposal
The current state of the major barriers that have hindered the large-scale adoption of
PEVs by consumers thus far—driving range, charging time, and vehicle price—will be examined
and discussed, and comparisons of electric vehicles relative to gasoline-powered vehicles and
other available vehicle types will be presented where applicable. As a reference for comparing
the current state of PEVs, information for current ICE vehicles and gasoline as a fuel will also be
presented.
4
Vehicles
Vehicle availability and sales trends
BEVs have been generally been available for sale to the public in the U.S. since 2008,
with the majority of models being introduced within the past six years. For model year 2017, 14
unique models of BEV are offered for sale by 13 different automobile manufacturers (EPA,
2017a). Table 2 shows the recent history of BEV availability by manufacturer and model year.
In total, 19 automobile manufacturers have offered 86 models (by company and model year) of
BEVs for sale in the U.S. since model year 2008.
Table 2
Number of individual models of battery electric vehicles (BEVs) available in the U.S.,
by company and model year (EPA, 2017a).
Company
Model year
Total
2011
2012
2013
2014
2015
2016
2017
BMW
1
1
1
2
5
Chevrolet
1
1
1
1
4
Coda Automotive
1
1
2
Fiat
1
1
1
1
1
5
Ford
1
2
1
1
1
1
1
8
Honda
1
1
1
3
Hyundai
1
1
Kia
1
1
1
3
Mercedes-Benz
1
1
1
1
4
Mitsubishi
1
1
1
1
1
1
6
Nissan
2
1
1
1
1
1
1
8
Scion
1
1
2
Smart
1
1
1
1
1
5
Tesla
1
1
1
1
1
4
11
20
Toyota
1
1
1
3
Volkswagen
1
1
1
3
Total
4
8
10
13
11
13
23
82
PHEVs became available to the general public in the U.S. starting in 2011, with the
majority of models being introduced within the past four years. For model year 2017, 22 unique
models of PHEVs are offered for sale by 12 different automobile manufacturers (EPA, 2017a).
5
Table 3 shows the recent history of PHEV availability by manufacturer and model year (from
2011 through 2017). In total, 13 automobile manufacturers have offered 69 models (by company
and model year) of PHEVs for sale in the U.S. since model year 2011.
Table 3
Number of individual models of plug-in hybrid electric vehicles (PHEVs) available in the U.S.,
by company and model year (EPA, 2017a).
Company
Model year
Total
2011
2012
2013
2014
2015
2016
2017
Audi
1
1
1
3
BMW
2
2
3
4
11
Cadillac
1
1
1
1
4
Chevrolet
1
1
1
1
1
1
1
7
Chrysler
1
1
Ford
2
2
2
2
2
10
Honda
1
1
2
Hyundai
2
2
Kia
1
1
Mercedes-Benz
1
2
3
6
Porsche
1
3
2
4
10
Toyota
1
1
1
1
1
1
6
Volvo
1
2
3
Total
1
2
4
9
13
14
23
66
While there have historically been more BEV models available from more individual
companies than PHEVs (82 versus 66, respectively), there are currently equal numbers of BEV
and PHEV models available for model year 2017 (23 for both). Companies that offer both
vehicle types tend to have more models of PHEVs available than BEVs.
Figure 2 illustrates the recent sales trends for both vehicle types. Figure 3 shows the
international PEV sales trends for recent years in several major automotive markets (accounting
for approximately 95% of global PEV sales) (DOE, 2016a). Both figures show the rapid
increase in sales of PEVs in recent years, especially for China and Western Europe.
6
Figure 2. Sales trends for battery electric vehicles (BEV) and plug-in hybrid electric vehicles
(PHEV) from 2011 to 2016 (AFDC, 2017g).
Figure 3. International sales trends for plug-in electric vehicles (PEVs) from 2011 to 2015
(DOE, 2016a).
In keeping with these trends, sales of PEVs are expected to continue climbing in the
coming years. An analysis by the U.S. Energy Information Administration (EIA) projects that
BEV sales in the U.S. will significantly surpass PHEV sales, totalling approximately twice the
0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
2011 2012 2013 2014 2015 2016
Battery electric (BEV) Plug-in hybrid electric (PHEV)
7
volume of BEVs as PHEVs by 2050 (EIA, 2017b). (However, a recent study by Axsen and
Kurani [2013] suggests that more initial success may be achieved in gaining market share
through the sale of small-battery PHEVs rather than BEVs. This pattern has already been
observed in Europe, with PHEVs outselling BEVs by a wide margin [EEA, 2016].) By 2025, the
EIA analysis estimates that electric vehicle sales will make up about 9% of all light-duty vehicle
sales. Figure 4 shows the projected sales estimates for BEVs and PHEVs from 2018 to 2050
(EIA, 2017b).
Figure 4. Projected sales estimates for BEVs and PHEVs in the U.S., 2018 to 2050 (EIA,
2017b).
Vehicle prices
The cost of PEVs has historically been higher, mostly due to the cost of developing the
advanced technology and manufacturing required for such vehicles and their batteries (Wolfram
and Lutsey, 2016). However, the median cost
3
of PEVs relative to the average cost of all new
vehicles have slowly dropped, and for model year 2017, the differential between median vehicle
costs was less than $10,000. A comparison of median new vehicle costs in the U.S. for the 2017
3
The PEV costs discussed here have not been reduced by any of the available state or federal incentives, including
the $7,500 (maximum) federal tax credit. Therefore, the actual cost of purchasing a PEV would likely be lower than
the costs discussed here after including all available incentives.
8
model year for each vehicle type is shown in Figure 5. The prices of PEVs are expected to
become comparable to prices for the average ICE vehicle in the next several years, especially in
Europe (Forbes, 2017; Wolfram and Lutsey, 2016).
Figure 5. Median new vehicle prices for model year 2017 in the U.S., by vehicle type
(Automotive News, 2016; Green Car Reports, 2017a, 2017b).
Vehicle fuel economy
The average fuel economy
4
of modern BEVs has always been substantially better than
comparable conventional ICE vehicles. Compared to the average fuel economy of 22.8 mpg for
current ICE vehicles,
5
the average available fuel economy of BEVs is more than 4.5 times
higher, averaging 103.0 mpge (miles-per-gallon equivalent). Furthermore, the range of
minimum and maximum fuel economies for each vehicle type do not overlap; ICE vehicles range
from 11 to 39 mpg, and BEVs from 72 to 136 mpge.
When operating in charge-sustaining (CS) mode with only gasoline being consumed,
PHEV efficiency performance averages 33.8 mpge, falling slightly above that of ICEs, but well
4
Fuel economy of electric vehicles is expressed in miles-per-gallon-equivalent (mpge). The calculation of mpge is
based on the equivalent mpg that would be required for a gasoline-powered ICE to emit the same level of GHGs,
based on the average amount of GHGs emitted to generate each unit of electric energy (e.g., kWh).
5
Average (non-sales-weighted) combined city/highway window sticker values for model year 2017 (EPA, 2017a).
9
below BEVs; when operating in charge-depleting (CD) mode, these vehicles average 80.1 mpge,
slightly below most BEVs. Argonne National Laboratory estimates that PHEVs are operated
approximately 50% of the time in each mode (ANL, 2015). A comparison of fuel-economy
trends by model year for each vehicle type is shown in Figure 6.
Figure 6. A comparison of fuel-economy trends (combined city/highway window-sticker value
[EPA, 2017a]) by model year for each vehicle type. The symbols mark the average fuel-
economy value for each vehicle type, while the ranges represent the minimum and maximum
fuel-economy values. The graphs for the different vehicle types within each model year have
been staggered to help illustrate any overlap between each set of fuel economy values.
Well-to-wheels GHG emissions and petroleum usage
The following well-to-wheels calculations use the GREET model (Greenhouse gases,
Regulated Emissions, and Energy use in Transportation; 2015 release) developed by Argonne
National Laboratory for model year 2015 passenger cars to calculate GHG emissions and
petroleum usage during vehicle operation (ANL, 2015). Well-to-wheels calculations estimate
the GHG emissions resulting from: (1) the production and delivery (well-to-pump), and (2) the
final consumption (pump-to-wheels) of a particular fuel or energy source. As such, well-to-
wheel results do not include GHG emissions or petroleum usage during the vehicle
10
manufacturing process. A comparison of well-to-wheels GHG emissions and petroleum usage
for each vehicle type is shown in Figure 7.
Notes: ICE = gasoline-powered, spark-ignited ICE
ICE-DI = gasoline-powered, spark-ignited ICE with direct fuel injection
FCV-Liq = fuel-cell vehicle using liquid hydrogen
FCV-Gas = fuel-cell vehicle using gaseous hydrogen
PHEV10 = PHEV capable of at least 10 miles on battery power alone
PHEV40 = PHEV capable of at least 40 miles on battery power alone
Figure 7. A comparison of well-to-wheels GHG emissions and petroleum usage for each vehicle
type based on the GREET model (ANL, 2015). For comparison, two types of PHEV are
modeled. Results for fuel-cell vehicles (FCVs) have also been included to show the relative
performance of both nonhydrocarbon-based alternative-fuel-powered vehicles that are available
to the public (i.e., electricity and hydrogen).
Based on the average mix of renewable and nonrenewable electric power sources in the
U.S.,
6,7
the average well-to-wheels GHG emissions for BEVs is the lowest, at 214 g/mi. The
corresponding values for two different PHEV implementationsPHEV10 and PHEV40—range
6
The implications of this average mix of electric power sources is discussed in the Fuel production and renewable
power sources subsection on pages 23-24 of this report.
7
Well-to-wheel GHG emissions and petroleum usage by BEVs occurs almost entirely during the well-to-pump stage
(i.e., electricity generation and transmission), with no GHG emissions occurring at the vehicle (i.e., pump-to-
wheels), and negligible petroleum usage at the vehicle for lubrication, etc.
11
from 253 to 278 g/mi, respectively. Gasoline-powered vehicles produce the most GHGs per
mile, ranging from 356 to 409 g/mi, depending on the specific type of ICE (direct fuel injection
versus conventional port fuel injection, respectively). The results of this GREET model indicate
that a typical BEV emits approximately half the amount of GHGs as a typical fuel-injected ICE.
A study by the European Environment Agency (EEA, 2016) estimates that BEV GHG emissions
could be reduced by a factor of 10 if completely renewable power sources were used.
When total well-to-wheels petroleum usage is compared (in British thermal units [Btu]),
there are also significant improvements for both PEV types versus conventional ICE vehicles.
For example, BEVs use the least amount of petroleum at 54 Btu/mi, with a typical PHEV40
vehicle model ranking the second lowest in usage at 1588 Btu/mi, and a typical PHEV10 vehicle
model using the third lowest amount at 2588 Btu/mi. Predictably, gasoline-powered vehicles use
considerably more petroleum per mile, with direct fuel injection ICEs averaging 3791 Btu/mi
and traditional fuel-injection ICEs averaging 4359 Btu/mi. While the PHEV40 consumes 29
times the amount of petroleum a typical BEV consumes, a typical fuel-injected ICE still
consumes nearly 3 times the amount of petroleum as a PHEV40 (and around 80 times as much as
a BEV). Future development of PHEV models with longer electric-only ranges will further
improve the overall PEV emissions and petroleum-consumption advantages over ICEs, while
also narrowing the gap between BEV and PHEV electric-only driving ranges and efficiency.
Driving range, charging time, and range anxiety
The average driving range of current BEVs is less than half that of PHEVs operating in
combined gasoline and electric mode (187 miles versus 462 miles, respectively) (EPA, 2017a).
However, BEVs significantly outdistance the range of current PHEVs operating in electric-only
mode (i.e., charge depleting), achieving more than 7 times the range on average (187 miles
versus 26 miles, respectively) (EPA, 2017a). Figure 8 shows the average driving ranges of each
vehicle type and operating mode, as well as the range of minimum and maximum distances, for
each recent model year. While the combined gas and electric ranges of PHEVs tend to be much
greater than BEVs, in recent years the BEV with the longest outperforms the PHEV with the
overall shortest range by a large margin (335 miles versus 180 miles, respectively); conversely,
the PHEV with the longest range when operating in electric-only mode can now outdistance the
BEV with the lowest range by 38 miles (97 miles versus 59 miles, respectively).
12
Figure 8. A comparison of average driving distances by model year for each vehicle type and
(for PHEV) operating mode. The symbols mark the average driving range for each vehicle type
and driving mode, while the ranges represent the minimum and maximum driving ranges (EPA,
2017a). The graphs for the different vehicle types within each model year have been staggered
to help illustrate any overlap between each set of driving ranges.
For a discussion of the current challenges related to charging time versus driving range,
see Schoettle and Sivak (2016). As described in SAE (2011), charging performance approaching
that of DC Level 3 (<10 min to charge to 80%) would generally alleviate the limitations (in
terms of both performance and public acceptance) imposed by long charging times for BEVs
relative to most other vehicle/fuel combinations. However, charge times for recent models of
BEVs and PHEVs have converged somewhat, with BEV charge times improving to just under
double the required charging time for a PHEV (4.8 hours versus 2.8 hours, respectively).
Figure 9 shows the recent trends for charging times by vehicle type. While BEVs require
approximately twice as much charging time, on average they are capable of more than seven
times the driving range of PHEVs, as previously illustrated in Figure 8 (187 miles versus 26
miles, respectively). Furthermore, the slowest charging PHEV (5 hours) now requires about the
same amount of time as the average BEV (4.8 hours), and the best BEV (3.5 hours) is
approaching the charge time of the average PHEV (2.8 hours).
13
Figure 9. A comparison of average charging times (in hours @ 240V) by model year for each
vehicle type. The symbols mark the average charging time for each vehicle type, while the
ranges represent the minimum and maximum charging times (EPA, 2017a). The graphs for the
different vehicle types within each model year have been staggered to help illustrate any overlap
between each set of charging times. Data were not available for years with missing values.
Recent improvements in range and charging times for both vehicle types move closer to
wider acceptance based on the ability to satisfy the daily driving requirements of most drivers
while lessening the overall range anxiety that plagued PEVs (particularly BEVs) when first
introduced. Two separate studies concluded that the current performance (or expected near
future performance) of BEVs and PHEVs is now more capable of meeting the daily travel needs
(based on daily vehicle miles of travel [VMT]) of a majority of U.S. drivers. FHWA estimates
that BEVs with a range of at least 120 miles would be able to cover 99% of all household vehicle
trips (FHWA, 2016). An analysis conducted by Argonne National Laboratory (Elgowainy, Han,
Poch, Wang, Vyas, Mahalik, and Rousseau, 2010) estimated that a PHEV with an all-electric
range of 30 miles (PHEV30) would be able to replace more than half (54%) of all daily VMT for
trips by U.S. drivers operating on battery power only (i.e., charge depleting or CD mode). Figure
10 reproduces Figure 3.8 (based on data in Table 3.4) from that report, showing the model
developed by ANL and the corresponding percentages of daily VMT in the U.S. that could be
replaced with PHEVs operating in CD mode, based on various PHEV driving ranges in CD
14
mode. Based on the ANL analysis, a PHEV40 would be capable of replacing around 62% of
daily VMT in the U.S., while a PHEV100 would be able to replace around 89% of daily VMT.
Figure 10. Percentage of daily VMT available for replacement by a PHEV in CD mode
(reproduced from Elgowainy et al., 2010).
Energy density and battery cost
Current automotive lithium-ion battery packs contain approximately 1.1 MJ/L (300
Wh/L) (OECD/IEA, 2016), or 1/32 the volumetric energy density of a similar volume of liquid
gasoline. The energy per mass (i.e., gravimetric density or specific energy) of relatively heavy
batteries remains at approximately 0.5 MJ/kg (150 Wh/kg) (DOE, 2013; Young, Wang, Wang,
and Strunz, 2013), compared with 44 MJ/kg for gasoline, which translates to 88 times less
energy density by mass than gasoline. However, achieving equal energy density may not be
required, as several estimates suggest that achieving 350 Wh/kg or better (still more than 30
times less energy dense than gasoline) would enable BEVs to generally replace gasoline-
powered ICE vehicles for most U.S. drivers (DOE, 2013; Nature, 2015). One study estimates
that the ability of batteries to equal gasoline performance as an energy source may occur as soon
as 2045, primarily due to future powertrains with greater efficiency and less mass than
comparable ICE vehicles (Vijayagopal, Gallagher, Lee, and Rousseau, 2016).
15
Matching the rapid increase in battery energy density has been the rapid decrease in
battery cost. Battery cost ($/kWh) dropped by 80% over six years, to around $250/kWh in 2015,
and then to approximately $200/kWh by 2016 (McKinsey, 2017; OECD/IEA, 2016). Several
estimates expect the cost to drop below $200/kWh in the next several years (McKinsey, 2017;
OECD/IEA, 2016), although some manufacturers claim to have already achieved this goal
(Electrek, 2017).
Summary of key vehicle-specific aspects of BEVs and PHEVs
Table 4 summarizes several key vehicle-specific aspects of battery electric vehicles and
plug-in hybrid electric vehicles. Current ICE vehicle technology is presented for comparison to
the alternative vehicle types.
16
Table 4
Relevant aspects of vehicle performance for model year 2017 battery electric vehicles (BEV) and
plug-in hybrid electric vehicles (PHEV).
Aspect Current ICE
Battery electric
(BEV)
Plug-in hybrid electric
(PHEV)
Fuel type Gasoline Electricity Gasoline + electricity
Number of vehicle models available 283 23 23
Average vehicle price $35,000 $39,160 $44,795
Average fuel economy 22.8 mpg 103.0 mpge
33.8 mpge (gasoline)
80.1 mpge (electric)
Fuel economy range 11 39 mpg 72 136 mpge
23 53 mpge (gasoline)
43 133 mpge (electric)
Effective cost per mile $0.10 $0.04
$0.07 (gasoline)
$0.05 (electricity)
Well-to-wheels GHG emissions
(g/mi)
8
356 409 214 253 278
Well-to-wheels total petroleum usage
(Btu/mi)
8
3791 4359 54 1588 2588
Driving range (average) 475 mi 187 mi
26 mi (electric)
462 mi (combined)
Driving range (min max) 381 716 mi
59 335 mi
12 97 mi (electric)
180 640 mi (combined)
Time to refuel/recharge ~ 5 min
~ 30 min, 80% charge
(DC Level 2)
~ 5 hr, 100% charge
(AC Level 2)
~ 5 min (gasoline)
~ 3 hr, 100% charge
(electricity; AC Level 2)
Availability of qualified mechanics Yes Limited Limited
Availability of qualified emergency
responders
Yes Yes Yes
Vehicle maintenance issues
9
-
Lower maintenance
than ICE
Possible battery
replacement required
during vehicle lifetime
Similar routine
maintenance as for ICE
Possible battery
replacement required
during vehicle lifetime
More technologically
complex than ICE or BEV
8
GREET 2015 release, using default settings for model year 2015 passenger cars (ANL, 2015).
9
AFDC (2014).
17
Charging infrastructure
Current and future availability
With the ability to tap into the existing electrical grid, the electricity required for BEV
charging is readily available in most commercial and residential settings. However, for the more
advanced AC Level 2 (current standard) and DC Fast Charging,
10,11
installation of special
charging equipment is required. Approximately 16 thousand public charging stations (individual
charging sites) offering nearly 43 thousand charging outlets (individual charging
connectors/plugs) are currently available across the U.S. (AFDC, 2017a). As is evident in
Figure 11, the number of publicly available charging stations has grown rapidly since 2011. For
comparison, there are approximately 112 thousand individual gasoline stations covering all 50
states and the District of Columbia (U.S. Census Bureau, 2015).
Figure 11. Public charging stations available in the U.S. (as of May 22, 2017) (AFDC, 2017a).
Table 5 summarizes the availability of charging levels at public stations in the U.S., while
Figure 12 shows the breakdown of connector types (and related charging levels) available at
10
For detailed descriptions of each charging level and type of connector, see AFDC (2017b) and SAE (2011). For a
summary of international standards and charging equipment, see Green Transportation (2017).
11
DC Fast Charging is expected to replace AC Level 2 charging as the prevailing standard for future vehicles (IHS
Markit, 2013).
18
these stations. While J1772 with AC Level 2 is currently the most common connector and
standard combination in the U.S., various forms of DC Fast charging (although with varying
connector types) are offered at 36% of public stations, making up 13% of all public charging
connections. (This discrepancy is due to the fact that stations offering multiple connection types
tend to offer more of some types than others.)
Table 5
Charging levels and number of physical connections available at public stations in the U.S. (as of
May 22, 2017) (AFDC, 2017a). Note: Some stations offer more than one level of charging.
Charging standard (level) Stations Connections
AC Level 1 1,482 2,924
AC Level 2 14,433 34,148
DC Fast 2,080 5,607
Inductive (wireless)
63
81
Figure 12. Percentage of public charging stations in the U.S. offering each connector type and
associated charging level (as of May 22, 2017) (AFDC, 2017a). (Inductive or wireless charging,
while still requiring specially equipped vehicles and EVSEs, is not shown here because it does
not require a unique physical connection.) Note: Some stations offer more than one connector
type.
J1772
(AC Level 2)
75.6%
Tesla
(DC Fast)
18.1%
CHAdeMO
(DC Fast)
10.4%
NEMA
(all types;
AC Level 1)
7.9%
Combo/CCS
(DC Fast)
7.1%
19
Figure 13 shows the general distribution of public charging stations within the U.S., by
state. The distribution of charging stations across the U.S. is strongly positively correlated with
state population size, r(49) = 0.867, p < .001, as states with larger overall populations tend to
have proportionally more public charging stations. Furthermore, within each state, public
charging stations also tend to cluster around large population centers, dropping in density in less
populous, more rural areas. Figure 14 illustrates the high density of public charging stations
around population centers (and correspondingly low density of stations in more rural areas) for
an example region and metropolitan area—the western U.S. (top pane) and the Los Angeles
metropolitan area (bottom pane).
Figure 13. Distributions of public charging stations within the U.S., by state (AFDC, 2017a).
A
20
Figure 14. Distributions of public charging stations relative to population centers versus rural
areas (Top pane: western U.S., bottom pane: Los Angeles metropolitan area) (AFDC, 2017a). In
each pane, examples of large population centers have been labelled.
Map data ©2017 Google, INEGI
Map data ©2017 Google, INEGI
Los Angeles
public charging station
Los Angeles
San Diego
San
Francisco
Denver
Seattle
public charging station
Phoenix
Portland
21
Expansion of the BEV charging network is relatively inexpensive, costing approximately
$1,000 for home-based charger installation, and ranging from approximately $5,000 to $50,000
for public charging station units (Green Car Reports, 2016; Inside EVs, 2014; Plug In America,
2017; Wolfram and Lutsey, 2016). For comparison, the cost of installing a gasoline station is
typically in the range of $1 million to $2 million (NPC, 2012).
General availability of public charging stations may prove to be more important for
BEVs than PHEVs, as drivers of PHEVs may often rely on the on-board ICE to power the
vehicle when the battery runs low; there is also evidence that PHEV users tend to charge mostly
at home, in the evening, relying less frequently on public charging than BEV users (DOE, 2014;
Kelly, MacDonald, and Keoleian, 2012; Tal, Nicholas, Davies and Woodjack, 2013).
Fuel pricing trends and effective cost per mile
Because units of sale are not standardized across different fuel types (gallons of gasoline
versus kWh of electricity), fuel pricing poses a challenge for customer acceptance and
understanding when comparing different vehicles and fuel types. Furthermore, the conversion
factors to the gasoline-gallon equivalent (GGE: the amount of an alternative fuel required to
equal the energy in one gallon of gasoline) are generally not known or easily understood by most
consumers.
For BEVs, 33.7 kWh of battery power is equal to the energy in 1 gallon of gasoline
(AFDC, 2014). With a national average price of approximately $0.128/kWh and GGE
conversion factor of 0.031 (GGE = kWh x 0.031; DOE [2017]), the current fuel cost
12
for
charging a PEV is $1.21/GGE (AFDC, 2017). The average fuel economy for model year 2017
BEVs is 103.0 mpge, resulting in an effective cost per mile of $0.04. Analogously, the cost per
mile for PHEVs is $0.05 when operating electrically in CD mode with an average fuel economy
of 80.1 mpge, and $0.07 when operating on gasoline in CS mode with an average fuel economy
of 33.8 mpge. For current gasoline-powered ICE vehicles, an average fuel economy of 22.8
mpg, coupled with a fuel price of $2.38 per gallon (AFDC, 2017d), results in a cost of $0.10 per
mile. The average effective fuel cost per mile for current ICEs is approximately two and a half
12
Per the AFDC (Department of Energy): “Electric prices are reduced by a factor of 3.4 because electric motors are
3.4 times more efficient than internal combustion engines” (AFDC, 2017d).
22
times the cost of operating a BEV, two times the cost of a PHEV operating only on battery
power, or one and a half times the cost of operating a PHEV on gasoline.
Examples of the preceding calculations are shown below:

*+,
=
$0.128 ℎ
0.031 ℎ
3.4 = $. /

*+,
=
$0.128 ℎ
0.031 ℎ
103.0 = $.  
In addition to considerably lower fuel costs per mile, PEVs also have the advantages of
price stability (i.e., lack of volatility) and projected slow increases in overall price. Figure 15
shows the recent price trends for both fuel types going back to April 2000, illustrating the
significant volatility of gasoline prices during that time relative to electricity prices (AFDC,
2017d). From April 2000 through January 2017, the maximum price fluctuation for electricity
(percentage difference between the minimum and maximum price per GGE) was 62% ($0.50)
versus 253% ($2.80) for gasoline. Figure 16 shows the fuel prices for both fuel types projected
out to 2050 (EIA, 2017a). The EIA projects that the price of electricity (in 2016 $/GGE) will
increase by less than $0.50 over the next 30 years (possibly even decreasing toward the end of
that period), while the price of gasoline is expected to increase by more than $1.00 per gallon
during that same time.
23
Figure 15. Recent trends in fuel pricing (in $/GGE) for gasoline and electricity (AFDC, 2017d).
Figure 16. Projected fuel pricing (in 2016 $/GGE) for gasoline and electricity (EIA, 2017a).
24
Fuel production and renewable power sources
As discussed earlier in this report, the well-to-wheels GHG emissions and petroleum
usage for BEVs and PHEVs are both considerably lower than for comparable ICE vehicles.
However, analysis of emissions for these vehicle types assumes an average mix of various power
sources for electricity generation.
13
Table 6 lists the average distribution of energy sources for
electricity generation in the U.S. (LLNL/DOE, 2017), with renewable sources listed in bold.
(Although nuclear power does not result in any GHG emissions, the uranium used in such power
plants is considered nonrenewable [EIA, 2016]. There is also some debate regarding the extent
to which biomass is truly carbon-neutral, and thus renewable [Cho, 2016].)
Considering that 86% of electricity in the U.S. comes from nonrenewable sources, and
65% comes from GHG emitting fuels, the cleaner average nature of BEVs and PHEVs can be
improved considerably by increasing the use of renewable fuels (and/or nuclear) to generate
electricity across the U.S. As a result of the variability across the country regarding the specific
sources of electricity generation, the overall cleanliness of PEVs relative to ICEs can differ
considerably based on where (state, county, etc.) the vehicle is driven and charged (CityLab,
2015; Scientific American, 2012). A report by the European Environmental Agency
(EEA, 2016) estimates that current BEV GHG emissions could be reduced by a factor of 10 if
completely renewable power sources were used.
A practical option to increase the use of renewable fuels for generating electricity
specifically for vehicle charging involves integrating solar-powered stations to supply electricity
directly to the ESVEs within a specific charging station or location (Bloomberg, 2017;
CleanTechnica, 2016; HybridCars.com, 2014).
13
The resultant emissions from this average mix of power sources also determine the mpge of vehicles that operate
on electric power. The calculation of mpge is based on the equivalent mpg required for a gasoline-powered ICE to
emit the same level of GHGs, based on the average amount of GHGs emitted to generate each unit of electric energy
(e.g., kWh).
25
Table 6
Average distribution of energy sources for electricity generation in the U.S.
(LLNL/DOE, 2017). Renewable energy sources are listed in bold.
Energy source Percent
Coal
37.6%
Natural gas 26.3%
Nuclear 21.9%
Hydro
6.3%
Wind 4.8%
Biomass 1.4%
Petroleum 0.7%
Solar 0.7%
Geothermal 0.4%
TOTAL 100.0%
Smart or intelligent charging
A survey conducted last year revealed that many “smart” or “intelligent” charging
functions in development are desired or expected by vehicle users when charging a PEV
(Schoettle and Sivak, 2016). In general, scenarios that enable consumers (or the PEV itself) to
exercise greater control and management over vehicle charging were given a higher preference
level than those that offer greater convenience. A partial list of smart-charging functions
includes plug-and-charge (automatic payment authorization), eVehicle roaming (prenegotiated
billing agreement that is applicable most places the vehicle is publically charged), optimized load
management (balancing of charging cost versus real-time demand), and vehicle-to-grid
applications (ability to use vehicle to supply power back to the grid in exchange for
compensation—also called reverse charging).
However, the currently competing protocols
14
to fully enable such smart charging—ISO
15118 and SEP 2.0are also still in development, and do not always equally satisfy the
expectations of PEV users. Table 7 (from Schoettle and Sivak, 2016) shows a comparison of
charging scenarios in terms of support by current protocols (i.e., ISO 15118 and SEP 2.0) and
consumer expectations (based on ranking of relative importance). Two of the top four most
14
For additional details and discussion of these smart charging protocols, see Schoettle and Sivak (2016).
26
important scenarios to consumers are not currently supported by the SEP 2.0 protocol, and the
remaining two scenarios are only partially supported. However, all of the top four scenarios are
currently supported by the ISO 15118 protocol. Furthermore, the remaining two applicable
charging scenarios in Table 7, although ranked as least important, are (or will be) at least
partially supported by both protocols.
Table 7
Comparison of charging scenarios, support for such scenarios by current protocols, and
consumer preferences (relative importance based on rank), sorted by rank (from Schoettle and
Sivak, 2016).
Charging scenario
Supported by
protocol?
Relative
importance
to consumers
(rank)
ISO
15118
SEP
2.0
Optimized load management
#1
Plug-and-charge
#2
eVehicle roaming
#3
Optimized load management to maximize
renewable energy usage
#4
Optimized load management for home
area networks
#5
Vehicle-to-grid (V2G) energy source
*
#6
Inductive (wireless) charging
n/a
#7
= Fully supported = Partially supported = Not supported
* = Fully supported in a future revision
V2G (vehicle-to-grid) technology
Vehicle-to-grid (or V2G) functionality, likely a key component of future smart-charging
systems, allows the exchange of power bidirectionally between the vehicle and the electrical
grid, typically with an agreement that the vehicle owner may be compensated for supplying such
energy, depending on the specific circumstances. A recent analysis concluded that a single
vehicle using V2G technology could generate around $1,000 per year for the owner (Shinzaki,
Sadano, Maruyama, and Kempton, 2015). In addition to the obvious monetary benefit to vehicle
27
owners, IEEE estimates that if 1 million PEVs were connected, roughly 10,000 megawatts would
be available (“about 20 average sized power plants”) for V2G power exchanges (IEEE, 2012).
Summary of key aspects of fuel sources and related refueling infrastructure
Table 8 summarizes several key aspects of the underlying fuel sources for PEVs and the
related refueling infrastructure. Gasoline and is presented for comparison to the alternative fuel
sources.
Table 8
Relevant aspects of the fuel sources and charging infrastructure for battery electric vehicles
(BEV) and plug-in hybrid electric vehicles (PHEV).
Aspect Current ICE
Battery electric
(BEV)
Plug-in hybrid electric
(PHEV)
Fuel type
Gasoline
Electricity
Gasoline + electricity
Refueling infrastructure Yes
Electric grid readily
available; charging
station required for
Level 2 or higher
Can use both BEV
and ICE refueling
infrastructures
Total number of existing and planned
public refueling stations
15, 16, *
112,458
15,949 (stations)
34,993 (connections)
Home and/or workplace refueling No Yes
Fuel price
17, 18
$2.38 / gal
$1.21 / GGE
$0.128 / kWh
Fuel properties of both
gasoline and electricity
apply for PHEVs
Gasoline-gallon equivalent (GGE)
19
1 gal 33.7 kWh
Flammable fuel Yes No
High voltage
No
Yes
Gravimetric energy density (MJ/kg)
20
44
0.5
Volumetric energy density (MJ/L)
20
32
1.1
*
For BEV and PHEV recharging, stations are the physical sites that contain one or more connections (i.e.,
individual connectors or EVSEs); these counts do not include private (fleet or business) or residential
chargers.
15
U.S. Census Bureau (2015).
16
AFDC (2017a).
17
National average prices for gasoline and electricity, April 1 April 17, 2017 (AFDC, 2017d).
18
AFDC (2014).
19
EIA (2017c).
20
OECD/IEA (2016).
28
Public opinion regarding PEVs
Public opinion is generally positive regarding acceptance of PEVs. For example,
individuals have expressed an interest in PEV technologies over traditional ICE vehicles as
gasoline prices climb (Schoettle and Sivak, 2015). Another recent study documented the fact
that many vehicle owners would be interested in upgrading to more electrified vehicles, with
many conventional ICE owners willing to consider purchasing a hybrid (including PHEV) and
many hybrid owners willing to consider purchasing a BEV (Sivak and Schoettle, 2014). A
survey of light-truck ownersa group traditionally opposed to PEVsfound that around 10%
would consider an all-electric light truck, and around 15% would consider an all-electric light
truck of the same make/model as their current light truck (Schoettle and Sivak, 2017). (Similar
views about interest in PEV ownership were also expressed by passenger-car owners in that
survey.)
29
Government support
Support from the U.S. government for both alternative fuel types and vehicle types is
relatively strong.
21
In 2015, funding support for battery research and development was
approximately $80 million (DOE, 2016b). Several goals of this research for electric vehicle
batteries include the following targets for 2020: reduce cost by a factor of four, reduce size by
factor of two, reduce weight by a factor of two (or more), all in an attempt “to more than double
the battery pack energy density (from 100 Wh/kg to 250 Wh/kg)” (DOE, 2016b).
In addition to research funding, various government agencies at both the national and
state level have enacted legislation specific to PEVs, often with the goal of encouraging or
incentivizing vehicle owners (including government, commercial, and individuals) to consider
purchasing PEVs. Such laws generally specify tax breaks, reduced cost of vehicle registration,
rebates or grants for equipment installation, and other similar cost reductions to encourage the
purchase of PEVs. One of the more significant incentives to encourage the purchase of a PEV is
a federal tax credit of up to $7,500 (EPA, 2017b).
22
Table 9 shows the number of individual
laws and incentives in place for the U.S. (National) and for each state.
21
The government support as discussed in this report was established and/or provided under the previous federal
government administration, and is less certain with the current administration. For example, future CAFE standards
established with the previous administration will be re-reviewed and possibly modified or eliminated (EPA/NHTSA,
2017).
22
Another significant, long-running incentive program that allowed for a tax credit of up to $1,000 for installing
charging equipment expired at the end of 2016 (IRS, 2016).
30
Table 9
Number of PEV-related (BEV and PHEV) laws and incentives currently in place
(as of May 22, 2017) (AFDC, 2017c).
State
PEV-related
laws/incentives
State
PEV-related
laws/incentives
National
23
26 South Carolina 7
California 56 Wisconsin 7
Washington 21 Missouri 6
Colorado 18 Delaware 5
Illinois 16 Iowa 5
Arizona 15 Idaho 5
Maryland 15 Vermont 5
Connecticut 14 Alabama 4
Oregon 14 Maine 4
Massachusetts 13 New Mexico 4
Virginia 13 Pennsylvania 4
North Carolina
12
Washington, D.C.
4
Rhode Island 12 West Virginia 4
Utah 12 Wyoming 4
New York
11
Arkansas
2
Minnesota 10 Kentucky 2
Florida 9 Louisiana 2
Georgia
9
Nebraska
2
Hawaii 9 New Hampshire 2
Indiana 9 Tennessee 2
Nevada 8 Alaska 1
Ohio 8 Mississippi 1
Texas 8 Montana 1
Michigan 7 Kansas 0
New jersey 7 North Dakota 0
Oklahoma 7 South Dakota 0
23
National includes all EV-related U.S. laws and incentives enacted on a national level, independent from
individual state laws and incentives.
31
Key Findings
Vehicle availability and sales
The number of individual PEV models available for purchase has increased rapidly
recently, nearly doubling from model year 2016 to 2017.
Sales of PEVs have also increased significantly in recent years, increasing by more than
700% in the U.S. since 2011. China and Europe have seen even larger increases in PEV
sales in recent years.
The prices of PEVs are slowly dropping and approaching prices that are similar to
comparable ICE vehicles.
Fuel economy and emissions
The fuel economy of both types of PEVs is substantially better than comparable gasoline-
powered vehicles; PHEVs and BEVs average more than 3.5 times and 4.5 times better
fuel economy, respectively, than ICE vehicles.
Even PHEVs with the lowest electric-only ranges emit lower levels of GHGs and
consume less petroleum (well-to-wheels) than comparable ICE vehicles.
BEVs emit lower levels of GHGs and consume much less petroleum on average than
comparable ICE vehicles or PHEVs. Additionally, BEVs would have the potential to be
even cleaner if a higher percentage of energy sources used to generate electricity in the
U.S. were renewable.
Batteries and charging
Charging times have dropped slightly in recent years but are still much longer than
refueling a gasoline-powered vehicle; however, PHEVs can operate on gasoline only so
they do not require charging the same way a BEV does.
Energy density of batteries is increasing while the cost ($/kWh) continues to decrease.
Both trends enable increasingly less-expensive, longer-range, and faster-charging PEVs.
32
Driving range and range anxiety
Maximum driving range, a significant factor in limiting BEV acceptance (based on so-
called range anxiety for drivers), has improved in recent model years, with some of the
longest-range BEVs capable of distances similar to some PHEV and ICE vehicles.
The maximum driving range of PHEVs (which combines the gasoline and electric
ranges) is already comparable to the range of most ICE vehicles.
Some PHEVs are now capable of electric-only driving ranges that are longer than some
of the lowest-range BEVs.
Advances in battery performance and driving range may soon enable BEVs (and PHEVs
operating on electricity) to replace conventional ICE vehicles for most U.S. drivers’ daily
trips.
Refueling infrastructure
The infrastructure to enable PEV charging is readily available through the current
electrical grid throughout the U.S. in both commercial and residential settings
Charging is often available or can be installed at home or work (unlike ICE refueling).
The number of public charging stations has grown very rapidly in recent years, with
approximately 16 thousand currently available in the U.S. (supplying approximately 35
thousand individual connections).
As one might expect, states with larger populations tend to have more public charging
stations; correspondingly, areas of higher population density tend to have more stations
than lower-density rural areas.
The average mix of fuel sources for generating electricity in the U.S. is approximately
65% fossil fuels (coal, natural gas, and petroleum), while only around 14% is generated
from renewable resources (the remainder of electricity in the U.S. comes from non-
renewable nuclear power); BEVs (and PHEVs operating on electricity) can be even
cleaner if electrical utilities could make greater use of renewable resources.
33
Fuel pricing
Compared to gasoline, electricity prices have been remarkably low and stable for at least
the past decade.
Electricity prices are projected to remain relatively low and stable in comparison to
gasoline prices over the next several decades.
“Smart” charging can enable various advanced charging-related functions such as
optimized balancing of charging prices versus demand. It can also allow for vehicle-to-
grid (V2G) capabilities so that vehicle users are potentially able to supply (i.e., sell)
electricity back to the grid as needed, based on the local demand for electricity at any
given time.
Public opinion and government support
Public interest in PEVs (as demonstrated by sales trends) has increased considerably in
recent years.
Users of most vehicle types would be more willing to consider a PEV if it were offered in
their current vehicle type (car, pickup truck, etc.), with interest increasing if a PEV were
offered in the specific make and model of their current vehicle.
Government support has been relatively strong in recent years, especially for advanced
battery R&D and in the form of financial incentives such as tax rebates. The federal
government currently offers a $7500 (maximum) tax credit for the purchase of a PEV; all
but three states offer some form of financial incentive for owning a PEV.
34
Summary
This report examined the current status and recent progress regarding various technical
issues and issues related to public acceptance that have traditionally hindered the more
widespread acceptance and adoption of plug-in electric vehicles (PEVs), which include both
battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV). As a reference for
comparison, information for current gasoline-powered internal combustion engines was also
presented where appropriate.
The main issues explored in this report include:
vehicle availability, including sales trends and costs
fuel economy, GHG emissions, and petroleum usage
batteries, charging time, driving range, and range anxiety
charging infrastructure availability and smart charging
public opinion and government support
Overall, recent advances and improvements in several of these areas have led to PEVs
becoming increasingly more competitive with traditional gasoline-powered internal-combustion
engine (ICE) vehicles. Furthermore, future costs of the vehicles and fuel, coupled with rising
public interest and increasing numbers of charging locations, are expected to make such vehicles
even more capable of replacing ICE vehicles for the majority of U.S. drivers in the relatively
near future.
35
References
AFDC [Alternative Fuels Data Center]. (2014). Fuel properties comparison. Available at:
http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf
AFDC [Alternative Fuels Data Center]. (2017a). Alternative fueling station locator. Available
at: http://www.afdc.energy.gov/locator/stations/
AFDC [Alternative Fuels Data Center]. (2017b). Developing infrastructure to charge plug-in
electric vehicles. Available at:
https://www.afdc.energy.gov/fuels/electricity_infrastructure.html
AFDC [Alternative Fuels Data Center]. (2017c). Federal and state laws and incentives.
Available at: https://www.afdc.energy.gov/laws
AFDC [Alternative Fuels Data Center]. (2017d). Fuel prices. Available at:
http://www.afdc.energy.gov/fuels/prices.html
AFDC [Alternative Fuels Data Center]. (2017e). How do all-electric cars work? Available at:
https://www.afdc.energy.gov/vehicles/how-do-all-electric-cars-work
AFDC [Alternative Fuels Data Center]. (2017f). How do plug-in hybrid electric cars work?
Available at: https://www.afdc.energy.gov/vehicles/how-do-plug-in-hybrid-electric-cars-
work
AFDC [Alternative Fuels Data Center]. (2017g). U.S. plug-in electric vehicle sales by model.
Available at: https://www.afdc.energy.gov/data/10567
ANL [Argonne National Laboratory]. (2015). The Greenhouse gases, Regulated Emissions, and
Energy use in Transportation (GREET) model [2015 release]. Available at:
https://greet.es.anl.gov/
Automotive News. (2016, December 15). Average U.S. transaction price hits record $34,077,
Edmunds says. Available at:
http://www.autonews.com/article/20161215/RETAIL01/161219904/average-u.s.-
transaction-price-hits-record-%2434077-edmunds-says
Axsen, J. and K. S. Kurani. (2013). Hybrid, plug-in hybrid, or electricWhat do car buyers
want? Energy Policy, 61, 532–543. Available at:
http://www.sciencedirect.com/science/article/pii/S0301421513004771
Bloomberg. (2017, April 24). Tesla doubles its Superchargers with massive solar stations.
Available at: https://www.bloomberg.com/news/articles/2017-04-24/tesla-doubles-its-
superchargers-with-massive-solar-stations
36
Carley, S., Duncan, D., Esposito, D., Graham, J. D., Siddiki, S., and Zirogiannis, N. (2016).
Rethinking auto fuel economy policy. Technical and policy suggestions for the 2016-17
midterm reviews. Available at: https://spea.indiana.edu/doc/research/working-
groups/fuel-economy-policy-022016.pdf
Cho, R. (2016). Is biomass really renewable? Available at:
http://blogs.ei.columbia.edu/2011/08/18/is-biomass-really-renewable/
CityLab. (2015, June 29). Where electric vehicles actually cause more pollution than gas cars.
Available at: https://www.citylab.com/environment/2015/06/where-electric-vehicles-
actually-cause-more-pollution-than-gas-cars/397136/
CleanTechnica. (2016, December 24). Solar-powered Tesla Superchargers with extreme power
(#ElonTweets). Available at: https://cleantechnica.com/2016/12/24/solar-powered-tesla-
superchargers-extreme-power-elontweets/
DOE [U.S. Department of Energy]. (2013). Advanced battery development. Available at:
https://energy.gov/sites/prod/files/2014/05/f15/APR13_Energy_Storage_d_III_Adv_Batt
ery_Dev_0.pdf
DOE [U.S. Department of Energy]. (2014). Evaluating electric vehicle charging impacts and
customer charging behaviors: Experiences from six smart grid investment grant projects.
Available at: https://energy.gov/oe/downloads/evaluating-electric-vehicle-charging-
impacts-and-customer-charging-behaviors
DOE [U.S. Department of Energy]. (2016a). Fact #918: March 28, 2016 global plug-in light
vehicle sales increased by about 80% in 2015. Available at:
https://energy.gov/eere/vehicles/fact-918-march-28-2016-global-plug-light-vehicle-sales-
increased-about-80-2015
DOE [U.S. Department of Energy]. (2016b). Vehicle technologies office: 2015 energy storage
R&D annual report. Available at:
https://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2015-energy-
storage-rd-annual-report
DOE [U.S. Department of Energy]. (2017). Fuel conversion factors to gasoline gallon
equivalents. Available at: https://epact.energy.gov/fuel-conversion-factors
EEA [European Environment Agency]. (2016). Electric vehicles in Europe. Available at:
https://www.eea.europa.eu/publications/electric-vehicles-in-europe
EIA [U.S. Energy Information Administration]. (2016). Renewable energy explained. Available
at: https://www.eia.gov/energyexplained/index.cfm?page=renewable_home
EIA [U.S. Energy Information Administration]. (2017a). Annual energy outlook 2017, Table 3:
Energy prices by sector and source. Available at:
https://www.eia.gov/outlooks/aeo/excel/aeotab_3.xlsx
37
EIA [U.S. Energy Information Administration]. (2017b). Annual energy outlook 2017, Table 36:
Light-duty vehicle sales by technology type. Available at:
https://www.eia.gov/outlooks/aeo/supplement/excel/suptab_39.xlsx
EIA [U.S. Energy Information Administration]. (2017c). Electric power monthly. Available at:
https://www.eia.gov/electricity/monthly/current_year/april2017.pdf
Elektrec. (2017, January 30). Electric vehicle battery cost dropped 80% in 6 years down to
$227/kWh – Tesla claims to be below $190/kWh. Available at:
https://electrek.co/2017/01/30/electric-vehicle-battery-cost-dropped-80-6-years-227kwh-
tesla-190kwh/
Elgowainy, A., Han, J., Poch, L., Wang, M. Q., Vyas, A. D., Mahalik, M., and Rousseau, A.
(2010). Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in
hybrid electric vehicles. Available at: https://www.anl.gov/energy-
systems/publication/well-wheels-analysis-energy-use-and-greenhouse-gas-emissions-
plug-hybrid
EPA [U.S. Environmental Protection Agency]. (2017a). Download fuel economy data.
Available at: http://www.fueleconomy.gov/feg/download.shtml
EPA [U.S. Environmental Protection Agency]. (2017b). Federal tax credits for all-electric and
plug-in hybrid vehicles http://www.fueleconomy.gov/feg/taxevb.shtml
EPA [U.S. Environmental Protection Agency]. (2017c). Final determination on the
appropriateness of the model year 2022-2025 light-duty vehicle greenhouse gas
emissions under the midterm evaluation (EPA-420-R17-001). Available at:
https://www.epa.gov/sites/production/files/2017-01/documents/420r17001.pdf
EPA/NHTSA [U.S. Environmental Protection Agency and National Highway Traffic Safety
Administration]. (2017). Notice of intention to reconsider the final determination of the
mid-term evaluation of greenhouse gas emissions standards for model year 2022–2025
light duty vehicles. Federal Register 82:54 (March 22, 2017), pp. 14671-14672.
Available at: https://www.gpo.gov/fdsys/pkg/FR-2017-03-22/pdf/2017-05316.pdf
FHWA [Federal Highway Administration]. (2016). Electric vehicle feasibility. Available at:
http://nhts.ornl.gov/briefs/EVFeasibility20160701.pdf
Forbes. (2017, May 22). Electric car price parity expected next year report. Available at:
https://www.forbes.com/sites/neilwinton/2017/05/22/electric-car-price-parity-expected-
next-year-report/
Green Car Reports. (2016, March 29). How to buy an electric-car charging station: Buyer's
guide to EVSEs. Available at:
http://www.greencarreports.com/news/1103133_how-to-buy-an-electric-car-charging-
station-buyers-guide-to-evses
38
Green Car Reports. (2017a, January 17). Electric car price guide: Every 2017 all-electric car,
with specs (updated). Available at:
http://www.greencarreports.com/news/1080871_electric-car-price-guide-every-2015-
2016-plug-in-car-with-specs-updated
Green Car Reports. (2017b, February 10). Plug-in hybrid price guide: Every 2017 model, with
specs. Available at: http://www.greencarreports.com/news/1108383_plug-in-hybrid-
price-guide-every-2017-model-with-specs
Green Transportation. (2017). EV DC fast charging standards CHAdeMO, CCS, SAE combo,
Tesla Supercharger, etc. Available at: https://greentransportation.info/ev-
charging/range-confidence/chap8-tech/ev-dc-fast-charging-standards-chademo-ccs-sae-
combo-tesla-supercharger-etc.html
HybridCars.com. (2014, June 10). Google testing fully autonomous EV charging station.
Available at: http://www.hybridcars.com/google-testing-fully-autonomous-ev-charging-
station/
IEEE [Institute of Electrical and Electronics Engineers]. (2012). Plug-in hybrid electric vehicles
(PHEVs). Available at:
https://www.ieee.org/about/technologies/emerging/emerging_tech_phev.pdf
IHS Markit. (2013). Number of fast-charging stations for electric vehicles set to rise to nearly
200,000 in 2020. Available at: http://news.ihsmarkit.com/press-release/design-supply-
chain-media/number-fast-charging-stations-electric-vehicles-set-rise-nea
Inside EVs. (2014, May 5). How much do public and home EV charging stations really cost?
Available at: http://insideevs.com/how-much-do-public-and-home-ev-charging-stations-
really-cost/
IRS [Internal Revenue Service]. (2016). Alternative Fuel Vehicle Refueling Property credit at a
glance. Available at: https://www.irs.gov/credits-deductions/individuals/alternative-fuel-
vehicle-refueling-property-credit
Kelly, J. C., MacDonald, J. S., and Keoleian, G. A. (2012). Time-dependent plug-in hybrid
electric vehicle charging based on national driving patterns and demographics. Applied
Energy, 94, 395–405. Available at:
http://www.sciencedirect.com/science/article/pii/S0306261912000931
LLNL/DOE [Lawrence Livermore National Laboratory and U.S. Department of Energy]. (2017).
Estimated U.S. energy consumption in 2016: 97.3 quads. Available at:
https://flowcharts.llnl.gov/content/assets/docs/2016_United-States_Energy.pdf
McKinsey [McKinsey & Company]. (2017). Electrifying insights: How automakers can drive
electrified vehicle sales and profitability. Available at:
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/electrifying-
insights-how-automakers-can-drive-electrified-vehicle-sales-and-profitability
39
Nature. (2015, October 28). Technology: A solid future. Available at:
http://www.nature.com/nature/journal/v526/n7575_supp/full/526S96a.html
NPC [National Petroleum Council]. (2012). Advancing technology for America’s transportation.
Available at: http://www.npc.org/reports/trans.html#ps&t
OECD/IEA [Organisation for Economic Co-operation and Development and International
Energy Agency]. (2016). Global EV outlook 2016. Available at:
https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.
pdf
Plug In America. (2017). Chargers. Available at: https://pluginamerica.org/get-
equipped/charging/
SAE [Society of Automotive Engineers]. (2011). SAE charging configurations and ratings
terminology. Available at: http://www.sae.org/smartgrid/chargingspeeds.pdf
Schoettle, B. and Sivak, M. (2015). Motorists’ views of fuel economy and advanced vehicle
technologies (Technical Report No. UMTRI-2015-18). Available at:
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/113267/103201.pdf
Schoettle, B. and Sivak, M. (2016). Consumer preferences for the charging of plug-in electric
vehicles (Technical Report No. SWT-2016-13). Ann Arbor, MI: Sustainable Worldwide
Transportation.
Schoettle, B. and Sivak, M. (2017). Consumer preferences and motivations for owning light
trucks versus passenger cars (Technical Report No. SWT-2017-7). Ann Arbor, MI:
Sustainable Worldwide Transportation.
Scientific American. (2012, April 17). Where you live determines how climate friendly electric
vehicles are. Available at: https://www.scientificamerican.com/article/where-you-
live-determines-climate-friendly-vehicles/
Shinzaki, S., Sadano, H., Maruyama, Y., and Kempton, W. (2015). Deployment of vehicle-to-
grid technology and related issues (SAE Technical Paper 2015-01-0306). Available at:
https://saemobilus.sae.org/content/2015-01-0306
Sivak, M. and Schoettle, B. (2014). What do current owners of hybrids and non-hybrids think
about hybrids? (Technical Report No. UMTRI-2014-25). Ann Arbor, MI: University of
Michigan Transportation Research Institute. Available at:
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/109078/103025.pdf?sequence=1
&isAllowed=y
Tal, G., Nicholas, M. A., Davies, J., and Woodjack, J. (2013). Charging behavior impacts on
electric vehicle miles travel: Who is not plugging in? Available at:
https://itspubs.ucdavis.edu/wp-content/themes/ucdavis/pubs/download_pdf.php?id=2098
40
U.S. Census Bureau. (2015). Economic census: Industry snapshots, gasoline stations (NAICS
4471). Available at:
http://thedataweb.rm.census.gov/TheDataWeb_HotReport2/econsnapshot/2012/snapshot.
hrml?NAICS=4471
Vijayagopal, R., Gallagher, K., Lee, D., and Rousseau, A. (2016). Comparing the powertrain
energy densities of electric and gasoline vehicles (SAE Technical Paper 2016-01-0903).
Available at: https://saemobilus.sae.org/content/2016-01-0903
Wolfram, P. and Lutsey, N. (2016). Electric vehicles: Literature review of technology costs and
carbon emissions. Available at:
http://www.theicct.org/sites/default/files/publications/ICCT_LitRvw_EV-tech-
costs_201607.pdf
Young, K., Wang, C., Wang, L. Y., and Strunz, K. (2013). Chapter 2: Electric vehicle battery
technologies. In R. Garcia-Valle and J. A. Peças Lopes (Eds.), Electric vehicle
integration into modern power networks (pp. 15-56). New York: Springer
Science+Business Media. Available at:
https://link.springer.com/chapter/10.1007%2F978-1-4614-0134-6_2